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The problem of two-dimensional scattering of elastic waves by an elastic inclusion
can be formulated in terms of a domain integral equation, in which the grad-div
operator acts on a vector potential. The vector potential is the spatial convolution of a
Green’s function with the product of the density and the displacement over the domain
of interest. A weak form of the integral equation for the unknown displacement is
obtained by testing it with rooftop functions. This method shows excellent numerical
performance. c© 2000 Academic Press

1. INTRODUCTION

The problem of elastic scattering by an inhomogeneous isotropic object can be formulated
in terms of an integral equation for the displacement over the domain of the object. This
integral equation can be written in a form where a grad-div operator acts on a vector potential.
The vector potential is the spatial convolution of a Green’s function with the product of the
density and the displacement over the domain of interest.

Numerous methods have been developed in electromagnetics to solve similar domain
integral equations. Among those, we choose to implement thek-space methods, since we
believe that methods of this type can be used for the solution of three-dimensional problems
due to their storage and computational efficiency.

According to [25] the first method for solving the electric field integral equation over the
domain of a dielectric object was developed by Richmond [16, 17]. He used the method
of moments with pulse expansion functions and point matching. The method of moments,
however, is computationally expensive since an inversion of a large matrix is necessary. To
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be more precise, it is known that direct solution of a system of equations in the method of
moments needs13 N3 computations, whereN is the number of unknowns. In our method we
do not solve a system and our computation time isn× N log(N), wheren is the number
of iterations.

Bojarski [4] introduced thek-space method, in which a fast Fourier transform algorithm
for computation of the spatial convolution that occurs in the integral equation reduced the
storage and computation time. As a result, the conjugate gradient method combined with
the fast Fourier transform (FFT) was developed [19, 21].

However, Borupet al. [5] showed that in the conjugate gradient FFT method serious
inaccuracies are observed for cylindrical objects in the TE case, and they adequately ex-
plained the source of the problem. In 1990 Joachimowicz and Pichot [9] introduced a
domain integral equation using generalized functions. Their approach improved the exist-
ing numerical results. However, some problems were still observed. For completeness we
refer the interested reader to [6, 18, 20]. In order to avoid these difficulties we use a weak
form of the conjugate gradient FFT method by testing the integral equation with rooftop
functions. Subsequently, a suitable expansion procedure of the vector potential in the in-
tegral equation is carried out. The grad-div operator acting on the vector potential of the
integral equation is integrated analytically over the object domain. Because of our simple
convolution structure the computational time has been significantly reduced. This approach
was first introduced by Van den Berg and Zwamborn [24, 25] in electromagnetics and gave
very accurate numerical results.

We choose 2-D formulations to test our algorithm because they are less computationally
involved than 3-D ones.

The numerical results presented are compared with analytical solutions, and it is demon-
strated that the present method shows excellent results. The first attempt at comparison
between the approximate and analytical solution was made by Banaugh in his Ph.D. thesis
[2]; see also [3]. Banaugh used boundary integral equations expressed in terms of a set of
displacement potentials. The equations are solved by means of finite difference approxi-
mations to the contour integrals. The resulting scattered field was found to be in excellent
agreement with that obtained from the series solution. In this way, Banaugh has obtained
numerical values for the surface potentials in the case of two-dimensional rigid and elas-
tic cylinders of arbitrary cross section. However, the numerical results presented involved
only small wave numbers (kp= 1,ks= 2). Calculations for larger values ofk have not been
executed since the necessary increase in matrix size results in excessive computational
effort [3].

2. NOTATION AND STATEMENT OF THE PROBLEM

Let C be a closed, Lyapunov curve in IR2 in the sense of Kupradze [11], on which a
Hölder continuous normal exists everywhere. LetDi andDe denote the regions interior and
exterior to C. Erect a Cartesian coordinate system with origin inDi and denote points in IR2

asx= (x1, x2) andx′ = (x′1, x′2). Assume thatDi is filled with an inhomogeneous elastic
material characterized by the constant Lame coefficientsλ andµ.

Let the source pointx∗ belong to domainDe. Let uinc be the displacement field to which
the given source gives rise throughout the domainDe, which is filled with a homogeneous
elastic material, also characterized by the constantsλ andµ.
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The forward scattering problem is modelled by the following transmission problem (TP).
For a given incident fielduinc and zero body forces, determineu(x) such that

1∗ui (x)+ ρ(x)ω2ui (x) = 0, x ∈ Di (1)

1∗ue(x)+ ρeω
2ue(x) = 0, x ∈ De (2)

ui (x) = ue(x), x ∈ S (3)

Tu i (x) = Tue(x), x ∈ S (4)

usct= ue− uinc is regular inDe in the sense of Kupradze. (5)

Here the real densityρ(x) is piecewise H¨older continuous inDi . Furthermore, the operator
1∗ is defined as

1∗ ≡ (λ+ 2µ)∇∇ − µ∇ × ∇ ×, (6)

and the stress operatorT is defined as (Ahner and Hsiao [1])

Tu(x) =
{[
(λ+ 2µ)

∂u1

∂x1
+ λ∂u2

∂x2

]
cos(n̂, x1)+ µ

[
∂u1

∂x2
+ ∂u2

∂x1

]
cos(n̂, x2)

}
ê1

+
{
µ

[
∂u1

∂x2
+ ∂u2

∂x1

]
cos(n̂, x1)+

[
λ
∂u1

∂x1
+ (λ+ 2µ)

∂u2

∂x2

]
cos(n̂, x2)

}
ê2. (7)

It can be shown [10, 13] that the above problem is governed by the integral equation

u(x) = uinc(x)+ ω2
∫

Di

(ρ(x′)− ρe)u(x′) · Γ(x, x′) dvx′ , x ∈ IR2, (8)

whereΓ(x, x′) is the Green’s displacement tensor and is given by Morse and Feshbach [12]
as

Γ(x, x′) = i

4

{
1

µ
I H (1)

0 (ks|x− x′|)− 1

ω2ρe
∇∇[H (1)

0 (kp|x− x′|)− H (1)
0 (ks|x− x′|)]}, (9)

wherekp, ks are the wave numbers for the P and the S wave, respectively.
The uniqueness of the solutionu(x) to this problem can be found in Kupradze [11] and

Hähner [8].
Inserting Eq. (9) into (8) yields

uinc(x) = u(x)− k2
s

∫
Di

i

4
H (1)

0 (ks|x− x′|)M(x′)u(x′) dvx′

−∇∇ ·
∫

Di

i

4

[
H (1)

0 (ks|x− x′|)− H (1)
0 (kp|x− x′|)]M(x′)u(x′) dvx′ , (10)

where

M(x′) = ρ(x′)− ρe

ρe
. (11)
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The integral equation above now takes the form

uinc
1 = u1− B1, (x1, x2) ∈ Di , (12)

uinc
2 = u2− B2, (x1, x2) ∈ Di , (13)

where the componentsB1 andB2 of the vectorB are given by

B1 = k2
sC1+ ∂1[∂1A1+ ∂2A2], (14)

B2 = k2
sC2+ ∂2[∂1A1+ ∂2A2], (15)

in which∂α denotes the partial derivative with respect toxα, α= 1, 2 and the vector poten-
tials,

A = {A1(x1, x2), A2(x1, x2)}, C = {C1(x1, x2),C2(x1, x2)}, (16)

are given by

A(x1, x2) =
∫
(x′1,x

′
2)∈Di

0s,p(x1− x′1, x2− x′2)M(x′1, x′2)u(x
′
1, x′2) dx′1 dx′2, (17)

where

0s,p(x1− x′1, x2− x′2) =
i

4

[
H (1)

0 (ks|x− x′|)− H (1)
0 (kp|x− x′|)] (18)

and

C(x1, x2) =
∫
(x′1,x

′
2)∈Di

0s(x1− x′1, x2− x′2)M(x′1, x′2)u(x
′
1, x′2) dx′1 dx′2, (19)

where

0s(x1− x′1, x2− x′2) =
i

4
H (1)

0 (ks|x− x′|). (20)

3. THE DISCRETIZATION PROCEDURE

We now proceed with the discretization by assuming that the domainDi is a rectangular
domain with boundaries along thex1 andx2 directions. We use a rectangular mesh with a
grid width of1x1 in thex1 direction and1x2 in thex2 direction.

The rectangular subdomains created are given by

Dm,n = {(x1, x2) ∈ IR2 | x1;m−1 < x1 < x1;m, x2;n−1 < x2 < x2;n}, (21)

where

x1;m = x1;M−1+m1x1, m= 1, . . . ,M, (22)

x2;n = x2;N−1+ n1x2, n = 1, . . . , N, (23)
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in which x1;0 is the lowerx1 bound of the contrasting domainDi , while x2;0 is its lower
x2 bound. We assume that the boundary of the domain is located in the embedding where
M= 0. It is understood that this is possible since the scattering domain can be extended
with a zero contrast functionM. In each rectangular subdomainDm,n with center (x1;m−1/2,

x2;n−1/2) we assume the real contrastM to be constant with valueMm,n.
We define two sequences of basis functions over the domainDi : a sequenceψ(1)

m,n(x1, x2)

that is continuous in thex1 direction and may jump at discontinuities of the material distri-
bution in thex2 direction, and a sequenceψ(2)

m,n(x1, x2) that is continuous in thex2 direction
and may jump at discontinuities of the density distribution in thex1 direction; see [22]. The
most simple basis functions that meet these requirements are the rooftop functions and are
defined as [13, 25]

ψ(1)
m,n(x1, x2) = 3(x1− x1;m | 1x1,1x1)5

(
x2− x2;n−1/2

∣∣1x2
)
, (24)

for m= 1, . . . ,M − 1 andn= 2, . . . , N− 1, and

ψ(2)
m,n(x1, x2) = 5

(
x1− x1;m−1/2

∣∣1x1
)
3(x2− x2;n | 1x2,1x2), (25)

for m= 2, . . . ,M − 1 andn= 1, . . . , N− 1. In the above3(x1− x1;m | 1x1,1x1) is the
triangle function with support 21x1 and5(x1− x1;m−1/2 | 1x1) is the pulse function with
support1x1. We further define

u1;m,n = u1
(
x1;m, x2;n−1/2

)
, (26)

uinc
1;m,n = uinc

1

(
x1;m, x2;n−1/2

)
, (27)

B1;m,n = B1
(
x1;m, x2;n−1/2

)
, (28)

Mm+1/2,n = 1

2
Mm,n + 1

2
Mm+1,n, (29)

for m= 1, . . . ,M − 1 andn= 2, . . . , N−1, and

u2;m,n = u2
(
x1;m−1/2, x2;n

)
, (30)

uinc
2;m,n = uinc

2

(
x1;m−1/2, x2;n

)
, (31)

u2;m,n = u2
(
x1;m−1/2, x2;n

)
, (32)

Mm,n+1/2 = 1

2
Mm,n + 1

2
Mm,n+1, (33)

for m= 2, . . . ,M − 1 andn= 1, . . . , N− 1.
Then Eqs. (12)–(13) are discretized as

U1;m,n − B1;m,n = uinc
1;m,n, (34)

U2;m,n − B2;m,n = uinc
2;m,n. (35)
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We now replace Eqs. (14)–(15) by their weak versions

B1;m,n =
∫

x∈(Dm,n∪Dm+1,n)
ψ(1)

m,n(x1, x2)
{

k2
sC1+ ∂1[∂1A1+ ∂2A2]

}
dv∫

x∈(Dm,n∪Dm+1,n)
ψ
(1)
m,n(x1, x2) dv

, (36)

B2;m,n =
∫

x∈(Dm,n∪Dm,n+1)
ψ(2)

m,n(x1, x2)
{

k2
sC2+ ∂2[∂1A1+ ∂2A2]

}
dv∫

x∈(Dm,n∪Dm,n+1)
ψ
(2)
m,n(x1, x2) dv

, (37)

while the vector potentialsA andC are explanded as

A1(x1, x2) =
∑
p,q

A1;p,qψ(1)
p,q(x1, x2), (38)

A2(x1, x2) =
∑
p,q

A2;p,qψ(2)
p,q(x1, x2). (39)

C1(x1, x2) =
∑
p,q

C1;p,qψ(1)
p,q(x1, x2), (40)

C2(x1, x2) =
∑
p,q

C2;p,qψ(2)
p,q(x1, x2). (41)

We then obtain

B1;m,n =
M∑

p=0

N∑
q=1

gm,n,p,qC1;p,q +
M∑

p=0

N∑
q=1

am,n,p,q A1;p,q +
M∑

p=1

N∑
q=0

bm,n,p,q A2;p,q, (42)

B2;m,n =
M∑

p=0

N∑
q=1

hm,n,p,qC2;p,q +
M∑

p=1

N∑
q=0

cm,n,p,q A2;p,q +
M∑

p=0

N∑
q=1

dm,n,p,q A1;p,q, (43)

where

gm,n,p,q = 1

6
k2

s(δp,m+1+ 4δp,m + δp,m−1)δq,n, (44)

am,n,p,q = (1x1)
−2(δp,m+1− 2δp,m + δp,m−1)δq,n, (45)

bm,n,p,q = (1x11x2)
−1(δp,m−1− δp,m)(δq,n − δq,n+1), (46)

hm,n,p,q = 1

6
k2

s(δq,n+1+ 4δq,n + δq,n−1)δp,m, (47)

cm,n,p,q = (1x2)
−2(δq,n+1− 2δq,n + δq,n−1)δp,m, (48)

dm,n,p,q = (1x11x2)
−1(δp,m+1− δp,m)(δq,n − δq,n−1), (49)

in which δm,n is the Kronecker delta [13].
Subsequently Eqs. (42) and (43) become

B1;m,n = 1

6
k2

s(C1;m−1,n + 4C1;m,n + C1;m+1,n)+ (1x1)
−2(A1;m−1,n − 2A1;m,n + A1;m+1,n)

+ (1x11x2)
−1(A2;m,n−1− A2;m,n + A2;m+1,n − A2,m+1,n−1), (50)
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B2;m,n = 1

6
k2

s(C2;m,n−1+ 4C2;m,n + C2;m,n+1)+ (1x2)
−2(A2;m,n−1− 2A2;m,n + A2,m,n+1)

+ (1x11x2)
−1(A1;m−1,n − A1;m,n + A1;m,n+1− A1,m−1,n+1). (51)

We now need to replace the continuous representations of the vector potentialsA andC
by discrete ones. In order to cope with the singularity of0s we use a global representation
consistent with our weak formulation. We integrateC1 over a circular domain with cen-
ter at the point(x1;m, x2;n−1/2), andC2 over a circular domain with center at the point
(x1;m−1/2, x2;n). For consistency we repeat the above procedure for the vector potentialsA1

and A2, respectively. The radius of the circular patches is taken to be1
21x= 1

2 min(1x1,

1x2). The results are divided by the surface areaπ( 1
21x)2 [16].

After approximating the resulting intergrals by appropriate trapezoidal rules we obtain

C1;m,n = 1x11x2

M−1∑
m′=1

N−1∑
n′=2

0∗s
(
x1;m − x1;m′ , x2;n−1/2− x2;n′−1/2

)
Mm′+1/2,n′u1;m′,n′ , (52)

for m= 0, . . . ,M andn= 1, . . . , N,

C2;m,n = 1x11x2

M−1∑
m′=2

N−1∑
n′=1

0∗s
(
x1;m−1/2− x1;m′−1/2, x2;n − x2;n′

)
Mm′,n′+1/2u2;m′,n′ , (53)

for m= 1, . . . ,M andn= 0, . . . , N,

A1;m,n=1x11x2

M−1∑
m′=1

N−1∑
n′=2

0∗s,p
(
x1;m− x1;m′ , x2;n−1/2− x2;n′−1/2

)
Mm′+1/2,n′u1;m′,n′ , (54)

for m= 0, . . . ,M andn= 1, . . . , N, and

A2;m,n=1x11x2

M−1∑
m′=2

N−1∑
n′=1

0∗s,p
(
x1;m−1/2− x1;m′−1/2, x2;n− x2;n′

)
Mm′n′+1/2u2;m′,n′ , (55)

for m= 1, . . . ,M andn= 0, . . . , N, where0∗s,p and0∗s are the integrals of the correspond-
ing Green’s functions0s,p and0s over the circular patches discussed above and are divided
by the surface areaπ( 1

21x)2. The discrete convolutionsC1;m,n,C2;m,n, A1;m,n and A2;m,n
can be computed effeciently using FFT routines [15].

4. SOLUTION OF THE PROBLEM

We now substitute Eqs. (52)–(55) into Eqs. (42)–(43) and use the results in Eqs. (34)–
(35).

This yields a linear system of equations foru1;m,n andu2;m,n with knownM; i.e.,

(Lu)1;p,q = uinc
1;p,q, p = 1, . . . ,M − 1, q = 2, . . . , N − 1, (56)

(Lu)2;p,q = uinc
2;p,q, p = 2, . . . ,M − 1, q = 1, . . . , N − 1, (57)
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where

(Lu)1;p,q = u1;p,q −
M∑

m=0

N∑
n=0

gp,q,m,nC1;m,n

−
M∑

m=0

N∑
n=1

ap,q,m,n A1;m,n −
M∑

m=1

N∑
n=0

bp,q,m,n A2;m,n, (58)

for p= 1, . . . ,M − 1 andq = 2, . . . , N− 1, and

(Lu)2;p,q = u2;p,q −
M∑

m=1

N∑
n=0

hp,q,m,nC2;m,n

−
M∑

m=1

N∑
n=0

cp,q,m,n A2;m,n −
M∑

m=0

N∑
n=1

dp,q,m,n A1;m,n, (59)

for p = 2, . . . ,M − 1 andq = 1, . . . , N − 1, and whereA1;m,n, A2;m,n,C1;m,n, andC2;m,n
directly follow from Eqs. (52)–(55).

The operator equation given by (56)–(57) will be solved with the aid of the conjugate
gradient method; see [21] and [13, p. 35].

For convenience, the P (dilation) and SV (rotation) components of the two-dimensional
scattered field are introduced [7].

The scattered P component is given by

usct
p (x) = ∂1usct

1 (x)+ ∂2usct
2 (x) x ∈ S. (60)

Consequently the scattered SV component is given by

usct
s (x) = ∂1usct

2 (x)− ∂2usct
1 (x), x ∈ S. (61)

Detailed forms for the above component equations can be found in [13].

5. NUMERICAL RESULTS

In our first numerical example the scatterer was taken to be a circular cylinder of radius
a = 0.35 m and densityρ = 1.3, while the outer medium’s density was 1; see also Fig. 1.
Hence, the contrast is 0.3. The scatterer is located in the test squareDi . This test square

FIG. 1. Discretization of the circular cylinder.
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FIG. 2. The real and the imaginary parts of the P component of the scattered field at the first station forkp= 3,
ks= 6, Err= 10−2, and 21× 21 subsquares.

was divided into 21× 21 subsquares of 0.1× 0.1 m2. The wave numbers of the P-waves
and the SV-waves arekp = 3, ks = 6, respectively. This means that the sidelength of the
test square was equal to about one wavelength for the P-waves and two wavelengths for the
SV-waves in the exterior medium. We excite our object by either P-waves or SV-waves. The
object will scatter both P-waves and SV-waves. The measurement surfaceSwas chosen to
be a circle with a radius of 3 m. Twenty-nine stations (J = 29) were located uniformly on
this circle, with each station serving successively as a line source and all stations acting as
receivers. The DFTs are efficiently computed using FFT algorithms [15].

In Figs. 2 and 3 we present the real and the imaginary parts of the P and SV components
of the scattered field, respectively. The tolerance in the residual error norm is taken to be
1%. Comparison with the analytical solution—see [23] and [13]—is made, and it follows
that a tolerance of 1% in the residual norm is insufficient.

We now repeat the above numerical experiment but this time for SV wave incidence. In
Figs. 4 and 5 we have recorded the real and imaginary parts of the P and SV components
of the scattered field, respectively. Again comparison with the exact solution is made. It
follows that the above tolerance is also insufficient.

We now repeat the above numerical experiment but this time with tolerance in the residual
norm of 0.1%. Comparison with the analytical solution, which is made in Figs. 6–9, shows

FIG. 3. The real and the imaginary parts of the SV component of the scattered field at the first station for
kp= 3, ks= 6, Err= 10−2, and 21× 21 subsquares.
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FIG. 4. The real and the imaginary parts of the P component of the scattered field at the first station forkp= 3,
ks= 6, Err= 10−2, and 21× 21 subsquares.

FIG. 5. The real and the imaginary parts of the SV component of the scattered field at the first station for
kp= 3, ks= 6, Err= 10−2, and 21× 21 subsquares.

FIG. 6. The real and the imaginary parts of the P component of the scattered field at the first station forkp= 3,
ks= 6, Err= 10−3, and 21× 21 subsquares.
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FIG. 7. The real and the imaginary parts of the SV component of the scattered field at the first station for
kp= 3, ks= 6, Err= 10−3, and 21× 21 subsquares.

FIG. 8. The real and the imaginary parts of the P component of the scattered field at the first station forkp= 3,
ks= 6, Err= 10−3, and 21× 21 subsquares.

FIG. 9. The real and the imaginary parts of the SV component of the scattered field at the first station for
kp= 3, ks= 6, Err= 10−3, and 21× 21 subsquares.
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FIG. 10. The real and imaginary parts of the P and SV component of the scattered field, respectively, at the
first station forkp= 3, ks= 6, contrast 6.3, Err= 10−3, and 41× 41 subsquares.

excellent numerical results for both kinds of wave incidence. The above tolerance is achieved
with only six iterations. We can now state that a tolerance of 0.1% is sufficient for the
same mesh since repeating the present experiment with tolerance of 0.01% yields identical
numerical results.

We now continue our numerical experiments by considering a problem with same ge-
ometry as the previous one, but with higher contrast. Assume now that the density of the
scatterer is now increased toρ= 7.3 and hence the contrast is 6.3. We excite our object
by a P-wave. It turns out that division of our domain in 21× 21 subsquars is not suffi-
cient, so we increase their number to 41× 41. For brevity in Fig. 10 we present only the
real and imaginary parts of the P and SV components of the scattered field, respectively.
As it was expected the number of iterations has now been significantly increased. It is
worthwile to point out that when the contrast was 0.3, only seven iterations were enough
to achieve the desired accuracy (10−3), but now this number has been increased to 92; see
Fig. 11. It is hence observed, that increase in the value of the contrast results to a signif-
icant increase in the iteration number. In Fig. 12 we show in a log–log scale the graph of
‖uapprox− uexact‖∞ (whereuapprox anduexact are the P-components of the scattered field,
for the approximate and exact solution respectively) with respect to the mesh size, and

FIG. 11. Comparison between the number of iterations for two different values of the contrast.
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FIG. 12. Plot of‖uapprox− uexact‖∞ with respect to the mesh size. Top line has slope 2.3; bottom line has slope
3.6.

it follows that the order of numerical convergence decreases for increasing values of the
contrast.

We now continue our numerical experiments by considering a problem with same ge-
ometry as the previous one, but with larger wave numbers. Namely, let the wavenumbers
of the P-waves and SV-waves now bekp= 6, ks= 12 and the density of the scatterer to be
againρ= 1.3. We first excite our object by a P-wave. We divide our test domain first in
21× 21 subsquares of 0.1× 0.1 m2 and then to 41× 41 subsquares of 0.0466× 0.0466 m2.
For brevity in Fig. 13 we present only the real parts of the P and SV components of the
scattered field. It is observed that as the number of discretization points becomes larger the
approximation is improved. The same thing was also observed, for the real parts of the P
and SV components of the scattered field. The number of iterations is also increased from
7 (kp= 3, ks= 6) to 16.

Hence from the above experiments we can conlude that the order of convergence of our
method decreases, for increasing values of the contrast and size of the object. Same behavior
as in the P-wave incidence case is observed, if we choose to excite the object by an incident
SV wave.

FIG. 13. The real parts of the P and SV component of the scattered field at the first station forkp= 6,ks= 12,
and Err= 10−3.
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6. CONCLUSIONS

We have presented a weak formulation of the conjugate gradient FFT method for elastic
scatterers. It is observed that the present weak form of the conjugate gradient FFT method
for the two-dimensional problem yields excellent agreement with the analytical results for
the test problems. Modeling the curved boundaries using a rectangular mesh seems to be
feasible and discretization errors tend to vanish for increasingly finer discretizations. The
simple convolution structure of the vector potential avoided matrix–vector multiplications
in the spectral domain. We only have matrix–vector multiplications in the spatial domain,
but these are over the domain of the elastic object only. That means that the computation
time of our method is even less than the computation time of the conjugate gradient FFT
methods discussed in the Introduction.

It is worthwile to mention that triangular discretization with linear expansion functions
would give a more accurate result with the same mesh sizes, but the simplicity of the
convolution structure of the operator will be lost, and FFT can no longer be used. With a
finer discretization of the rectangular domains (with substantially less computation time
than using triangular discretization) the same accuracy is achieved.

The present method can provide data which can be used for the solution of the corre-
sponding inverse problem [14]. Future work should also be directed toward extending the
method to three-dimensional problems, but this has yet to be done.
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